Indexed by:
Abstract:
本发明公开了一种基于深度学习的电影推荐方法,采用Replicated Softmax模型作为受限玻尔兹曼机的可见层,将用户数据预处理成二维向量input(评分,电影)输入至Replicated Softmax模型中;随机初始化学习参数,可见层与隐藏层逐层正反向推断,通过吉布斯采样分别获得隐藏层状态和可见层的softmax状态;完成采样后利用对比散度法进行快速学习,不断调参、迭代,训练出适配该用户的模型。本发明对传统的条件受限玻尔兹曼机进行改进,设计了一个适配以电影评分为基准的条件受限玻尔兹曼机;本发明能够解决传统协同过滤推荐算法存在的过拟合、冷启动等问题。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN201711374649.X
Filing Date: 2017-12-19
Publication Date: 2018-04-20
Pub. No.: CN107944049A
Applicants: 北京工业大学
Legal Status: 驳回
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: