Indexed by:
Abstract:
一种基于即时学习局部模型的发酵过程故障监测方法涉及数据驱动的故障诊断领域。全局建模不能克服实际生产中存在的生产过程多阶段性、季节影响和物料品质影响等问题,面对时变过程会产生大量误报。本发明为了克服实际故障监测中模型失配的问题,提出基于即时学习策略的局部建模方法,用局部偏最小二乘模型监测故障。将信息熵引入即时学习策略中自动选取较相似的样本点进行建模。由于局部模型能够表征当前系统状态,所以无需进行阶段辨识,减少了计算量,并且克服了发酵过程的时变特性给监测带来的问题。行之有效地降低了误报率,提高了故障监测准确率,保证了生产的安全经济。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201610179985.8
Filing Date: 2016-03-26
Publication Date: 2018-03-30
Pub. No.: CN105652845B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: