Indexed by:
Abstract:
The optimal control is an effective method to reduce energy consumption for municipal wastewater treatment process. However, it is still a challenge to improve the effluent qualities and reduce energy consumption simultaneously for the municipal wastewater treatment process. To solve this problem, a data-knowledge driven multiobjective optimal control (DK-MOC) method is proposed in this paper. First, the expression relationship among effluent qualities, energy consumption and system operation state is established to obtain the operational optimal objective model. Second, a dynamic multiobjective particle swarm optimization algorithm, based on knowledge transfer learning method, is proposed to obtain the optimal set-points of control variables adaptively. Finally, the proposed DK-MOC method is applied to the benchmark simulation model No. 1 (BSM1) of the municipal wastewater treatment process. The results demonstrate that this proposed method can obtain the optimal set-points of control variables online, which not only improve the effluent qualities, but also reduce the operation energy consumption effectively. Copyright © 2021 Acta Automatica Sinica. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Acta Automatica Sinica
ISSN: 0254-4156
Year: 2021
Issue: 11
Volume: 47
Page: 2538-2546
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: