• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xue, Bingxin (Xue, Bingxin.) | Zhu, Cui (Zhu, Cui.) | Wang, Xuan (Wang, Xuan.) | Zhu, Wenjun (Zhu, Wenjun.)

Indexed by:

EI Scopus

Abstract:

Recently, Graph Convolutional Neural Network (GCN) is widely used in text classification tasks, and has effectively completed tasks that are considered to have a rich relational structure. However, due to the sparse adjacency matrix constructed by GCN, GCN cannot make full use of context-dependent information in text classification, and cannot capture local information. The Bidirectional Encoder Representation from Transformers (BERT) has been shown to have the ability to capture the contextual information in a sentence or document, but its ability to capture global information about the vocabulary of a language is relatively limited. The latter is the advantage of GCN. Therefore, in this paper, Mutual Graph Convolution Networks (MGCN) is proposed to solve the above problems. It introduces semantic dictionary (WordNet), dependency and BERT. MGCN uses dependency to solve the problem of context dependence and WordNet to obtain more semantic information. Then the local information generated by BERT and the global information generated by GCN are interacted through the attention mechanism, so that they can influence each other and improve the classification effect of the model. The experimental results show that our model is more effective than previous research reports on three text classification data sets. © 2021 Institute of Physics Publishing. All rights reserved.

Keyword:

Author Community:

  • [ 1 ] [Xue, Bingxin]Beijing University of Technology, Faculty of Information Technology, Chaoyang District, Beijing, China
  • [ 2 ] [Zhu, Cui]Beijing University of Technology, Faculty of Information Technology, Chaoyang District, Beijing, China
  • [ 3 ] [Wang, Xuan]Beijing University of Technology, Faculty of Information Technology, Chaoyang District, Beijing, China
  • [ 4 ] [Zhu, Wenjun]Beijing University of Technology, Faculty of Information Technology, Chaoyang District, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

ISSN: 1742-6588

Year: 2021

Issue: 1

Volume: 2137

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:348/10714583
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.