Indexed by:
Abstract:
Through analysis of biological wastewater treatment process (WWTP), a multi-objective optimal control strategy was developed with targets of minimizing both energy consumption and amercement. A hybrid multi-objective barebones particle swarm optimization (HBBMOPSO) algorithm based on Pareto dominance and decomposition was proposed to improve convergence and diversity of optimized set of Pareto solutions. In HBBMOPSO, selection of personal leaders was determined from self-adaptive penalty factor decomposition while maintenance of external dossiers and selection of global leaders were determined from dominance and crowded distance. Furthermore, elitism learning strategy was adopted to facilitate particle escaping from local Pareto fronts. Finally, HBBMOPSO was combined with self-organizing fuzzy nerve network modeler and controller to realize dynamic optimization, intelligent decision, and background monitoring on dissolved oxygen and nitrate nitrogen in biological WWTP. Experimental study on international standardized simulator platform BSM1 showed that HBBMOPSO method can effectively reduce energy consumption under the premise of ensuring effluent to meet quality standard. © All Right Reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
CIESC Journal
ISSN: 0438-1157
Year: 2017
Issue: 9
Volume: 68
Page: 3511-3521
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: