Indexed by:
Abstract:
Ecological problems and pollution problems must be faced and solved in the sustainable development of a country. With the continuous development of image analysis technology, it is a good choice to use machine to automatically judge the external environment. In order to solve the problem of smoke extraction and exhaust monitoring, we need the applicable database. Considering the number of databases that can be used to detect smoke is small and these databases have fewer types of pictures, we subdivide the smoke detection database and get a new database for smoke and smoke color detection. The main purpose is to preliminarily identify pollutants in smoke and further develop smoke image detection technology. We discuss eight kinds of convolutional neural network, they can be used to classify smoke images. Testing different convolutional neural networks on this database, the accuracy of several existing networks is analyzed and compared, and the reliability of the database is also verified. Finally, the possible development direction of smoke detection is summarized. © 2020, Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2020
Volume: 1181
Page: 13-22
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: