Abstract:
Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.
Keyword:
Reprint Author's Address:
Email:
Source :
天文和天体物理学研究
ISSN: 1674-4527
Year: 2021
Issue: 12
Volume: 21
Page: 19-29
1 . 8 0 0
JCR@2022
ESI Discipline: SPACE SCIENCE;
ESI HC Threshold:77
JCR Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: