Abstract:
为改善电动自行车带来的交通安全问题,研究逆行风险行为与其影响因素间的相关关系.基于长沙市芙蓉区共享电动自行车GPS轨迹数据,实现逆行行为的精准识别,采用机器学习Cat-Boost模型与SHAP可解释机器学习框架,从道路条件、交通状态、土地利用性质等方面开展逆行行为影响要素挖掘及作用解析.研究结果表明:CatBoost模型能够有效预测路段逆行频次并提取逆行行为的重要影响因素,主要包括出行时段、公共交通设施、土地利用性质、道路条件及交通状态等;从出行时段来看,工作日、早晚高峰时段更容易发生逆行;从公共交通设施与土地利用性质来看,道路周围公交站地铁站出口数量及餐饮、公司、购物等设施数量与逆行频次呈现非线性影响关系,在一定范围内设施数量与逆行行为存在正影响作用;从道路条件来看,过街通道间距在50~400 m时不易发生逆行,在非机动车道无物理隔离设施或过街通道间距在400~600 m时容易发生逆行,间距大于600 m时作用不稳定;从路段机非分隔形式来看,护栏分隔的逆行概率较低,绿化带分隔的逆行概率较高;从交通状态来看,当骑行速度、加速度较低或较高时与逆行行为负相关,当骑行速度在6~16 km·h-1及加速度在0.3~1.0 m·s-2时与逆行行为正相关.研究成果可为共享电动自行车风险骑行行为辨识、非机动车交通安全管理提供有效的技术支持.
Keyword:
Reprint Author's Address:
Email:
Source :
中国公路学报
ISSN: 1001-7372
Year: 2021
Issue: 12
Volume: 34
Page: 262-275
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: