Abstract:
本文考虑超高维部分线性模型,其中参数向量维数是样本量的指数阶.基于profile最小二乘方法和保留正则化方法,本文提出了新的变量选择方法用来解决超高维部分线性模型的变量选择问题.在一定的正则条件下,证明了所得估计量的符号相合性.通过数值模拟和实例分析,将该方法与Lasso、SIS-Lasso、自适应Lasso方法进行对比,发现所提方法在恢复线性部分参数向量符号方面明显优于其它方法.
Keyword:
Reprint Author's Address:
Email:
Source :
应用概率统计
ISSN: 1001-4268
Year: 2021
Issue: 6
Volume: 37
Page: 551-568
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: