Abstract:
针对基于监督学习的视觉里程计需要数据集提供真实的位姿数据,但实际上符合条件的样本数量又较少的问题,提出了一种基于自监督循环卷积神经网络的位姿估计方法.该方法以图像序列为输入,首先通过卷积神经网络提取与运动相关的特征,然后使用卷积长短期记忆网络进行时序建模,建立多帧之间的运动约束,最后输出六自由度的位姿.该模型使用了一种基于对极几何的损失函数以自监督学习方式优化网络参数.将模型在KITTI数据集上进行实验,并与其他4种算法进行对比.结果表明,该方法在位姿估计准确性上优于其他单目算法,并且具有不错的泛化能力.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2021
Issue: 12
Volume: 47
Page: 1311-1320
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: