• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zeng, Huiping (Zeng, Huiping.) | Yu, Yaping (Yu, Yaping.) | Wang, Fanshuo (Wang, Fanshuo.) | Zhang, Jie (Zhang, Jie.) | Li, Dong (Li, Dong.) (Scholars:李冬)

Indexed by:

EI Scopus SCIE

Abstract:

A novel granular adsorbent (GA) consisting of spheres with size ranging from 1.6 mm to 1.8 mm, was made of iron-containing backwashing residual sludge. The adsorbent was characterized by SEM (scanning electron microscopy), XRD (X-ray diffraction), and BET (Brunauner-Emmett-Teller analysis). Laboratory experiments including batch and column studies were also carried out to survey the adsorption ability of GA for As(V) removal. The results showed that GA was mainly amorphous with a large specific surface area (110.30m(2)/g) and rich in iron. Langmuir model gave a better representation than that of Freundlich for As(V) adsorption behavior, with the maximum adsorption capacity 14.95 mg/g, outperforming most of reported granular sorbents. Pseudo-first order model and pseudo-second order model were suitable to describe the kinetic curves. The results obtained from the thermodynamic parameters indicated that the adsorption of As(V) by GA was feasible, endothermic and spontaneous. Arsenic adsorbed GA was regenerated by washing 4 times with 1% NaOH, resulting in a decrease of adsorption capacity by about 35%. A fixed bed column study showed that about 210 and 1200 bed volumes of influent with 150 mu g/L As(V) were respectively treated before the concentration of effluent reached 10 and 50 mu g/L.

Keyword:

Chitosan Arsenic removal Adsorption Granulation Water treatment residuals

Author Community:

  • [ 1 ] [Zeng, Huiping]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 2 ] [Yu, Yaping]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Fanshuo]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Jie]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Dong]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Jie]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China

Reprint Author's Address:

  • 李冬

    [Li, Dong]Beijing Univ Technol, Key Lab Water Qual Sci & Water Environm Recovery, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS

ISSN: 0927-7757

Year: 2020

Volume: 585

5 . 2 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:139

Cited Count:

WoS CC Cited Count: 90

SCOPUS Cited Count: 100

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:262/10585976
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.