• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, D. (Li, D..) | Yang, J.-W. (Yang, J.-W..) | Li, Y. (Li, Y..) | Zhang, J. (Zhang, J..)

Indexed by:

Scopus

Abstract:

Inoculate mature aerobic granular sludge at room temperature in an anaerobic/aerobic alternate continuous flow system composed of independent anaerobic tanks and aerobic tanks, control the effect of mixed liquid reflux ratio and organic load on the removal of COD, TN and TP by anaerobic and aerobic alternating continuous flow process. The results showed that the two-stage continuous flow process can achieve better nitrogen and phosphorus removal performance by adjusting a lower reflux ratio when the influent organic load was low. The average concentration of COD, TN and TP in the effluent was 18.78, 5.79 and 0.49mg/L. The average removal rate was 93.76%, 84.3% and 83.12% respectively; when the organic load was higher, the long-term two-stage continuous flow system lacked the environmental stress of feast and famine, resulting in filamentous bacteria growth, deterioration of system performance. The model was used to characterize the granular sludge and system effluent at different stages. The results showed that the organic load has a greater impact on the production of intermediate products related to the utilization of foreign substrates. The influent with lower organic load could effectively reduce the generation of intermediate products in the effluent. In summary, in the actual secondary urban sewage treatment plant, the anaerobic/aerobic alternating continuous flow process was not suitable for long-term operation under the organic concentration (500mg/L) of the emission limit. © 2021, Editorial Board of China Environmental Science. All right reserved.

Keyword:

Organic loads Aerobic granular sludge continuous flow Anaerobic and aerobic alternate Reflux ratio

Author Community:

  • [ 1 ] [Li D.]Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Yang J.-W.]Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Li Y.]Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Zhang J.]Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Zhang J.]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

China Environmental Science

ISSN: 1000-6923

Year: 2021

Issue: 9

Volume: 41

Page: 4149-4156

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:777/10616238
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.