Indexed by:
Abstract:
Precision matrix (inverse covariance matrix) estimation is a rising challenge in contemporary applications while dealing with high-dimensional data. This paper focuses on large-scale precision matrix of the random vector that only has lower polynomial moments. We mainly investigate upper bounds of the proposed estimator under the spectral norm in terms of the probability and mean estimation respectively. It is shown that the data-driven estimator is fully adaptive and achieves the same optimal convergence order as under Gaussian assumption on the data. Simulation studies further support our theoretical claims.
Keyword:
Reprint Author's Address:
Email:
Source :
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
ISSN: 0170-4214
Year: 2023
Issue: 4
Volume: 47
Page: 2925-2940
2 . 9 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: