Indexed by:
Abstract:
To solve the rehabilitation problem of hand dysfunction caused by stroke and other accidental injuries, an underactuated four-finger three-joint hand rehabilitation mechanism with good physical human-robot interaction performance was designed. The configuration design and operation principle of the mechanism were introduced at first. At the same time, the statics analysis and kinematics simulation of the mechanism were carried out. Finally, the prototype was developed to complete the performance test and operation reliability experiment. The robot innovatively designs a power transmission system using only connecting rod mechanism. Compared with the traditional gear drive or hybrid drive ones, it has a simple structure and can realize synchronous movement of three joints driven by a motor. The experimental results of the prototype show that the mechanism can meet the needs of human finger rehabilitation and effectively improve the physical human-robot interaction performance. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2023
Volume: 14274 LNAI
Page: 25-37
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: