Indexed by:
Abstract:
Combination of the Motor Imagery EEG (MI-EEG) imaging and Deep Convolutional Neural Network is a prospective recognition method in brain computer interface. Nowadays, the frequency or time-frequency analysis has been applied to each channel of MI-EEG signal to obtain a spatio-frequency or time-frequency image, and even the images from several channels are infused to generate a combined image. However, the real position information of channels or electrodes is lost in these MI-EEG images, and this is contradictory to the activation area of MI-tasks. In this paper, the MI period and the frequency band covered by mu and beta rhythms are divided into ten time windows and three sub-bands, respectively. Then, for each electrode, Fast Fourier Transform (FFT) is employed to transform each time window to spectrum, and its inverse FFT is calculated for each sub-band. The time-domain powers of ten time windows are averaged for the same sub-band. So, three average powers are generated as the time-frequency features of each electrode of MI-EEG. They are further arranged to the electrode coordinate figure by using Clough-Tocher interpolation algorithm, and a complicated image, in which the time-frequency features are correctly located at the real position of each electrode, is obtained to embody the MI-EEG in detail. Furthermore, a VGG network is modified to perform effective recognition for MI-EEG image, and it is called mVGG. Extensive experiments are conducted on three publicly available datasets, and the 10-folds cross validation accuracies of 88.62%, 92.28% and 96.86% are achieved respectively, and they are higher than that of the state-of-the-art imaging methods. Kappa values and ROC curves demonstrate our method has lower class skew and error costs. The experimental results show that the effectiveness of proposed MI-EEG imaging method, and it is well-matched with mVGG.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE ACCESS
ISSN: 2169-3536
Year: 2020
Volume: 8
Page: 3197-3211
3 . 9 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 37
SCOPUS Cited Count: 47
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: