Indexed by:
Abstract:
The gradient distribution of platinum loading in the catalyst layer along the flow channel direction affects the utilization of reactants and the transfer of heat and species. On this basis, the influence of operating conditions on the cell performance, heat and mass transfer of proton exchange membrane fuel cells with platinum loading gradient distribution along the flow channel direction is still unclear. Therefore, based on a two-dimensional, non-isothermal, two-phase proton exchange membrane fuel cell model, the effects of reactants flow direction and stoichiometric ratio on proton exchange membrane fuel cells with the two-gradient distribution or the three-gradient distribution of platinum loading in the multi-gradient distributions were investigated. The results show that the reactant flow direction has a weak impact on the electrical performance and species content of platinum loading gradient distribution fuel cells and the increase of stoichiometric ratio can improve the performance of the fuel cell with platinum loading gradient distribution. Furthermore, with the increase of stoichiometric ratio, the performance improvement degree of the cell with gradient distribution of platinum loading increases compared with the uniform distribution. © 2023 Chemical Industry Press. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
CIESC Journal
ISSN: 0438-1157
Year: 2023
Issue: 9
Volume: 74
Page: 3831-3840
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: