Indexed by:
Abstract:
The flow patterns and characteristics of two-phase gas-liquid flow in a 90° bend under different gravity were simulated. Based on the VOF (Volume of Fluid) method, a three-dimensional mathematical model of two-phase gas-liquid flow in a 90° bend tube was established to analyze the distribution of flow pattern, the cross-sectional void fraction, the slip ratio and the maximum skew angle in tail of the gas phase in a 90° bend under varied gravities of 10-6g0, 10-4g0, 10-2g0 and 1g0 (g0 = 9.8 m/s2). It is shown that the effects of flow patterns and cross-section void fraction of gas-liquid two-phase flow under varied gravity conditions can be correctly analyzed by the developed model and the difference of secondary flow is obtained between the gas-liquid two-phase bend flow and the single-phase flow. With the increasing of gravity level, that the gas phase is accumulated to the inside of the 90° bend makes the effect of 90° bend on the gas phase flow and the oblique effect the 90° bend to the tail get weaken. ©, 2015, Chinese Journal of Theoretical and Applied Mechanics Press. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Chinese Journal of Theoretical and Applied Mechanics
ISSN: 0459-1879
Year: 2015
Issue: 2
Volume: 47
Page: 223-230
Cited Count:
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: