Indexed by:
Abstract:
This study employed multispectral techniques to evaluate fulvic acid (FA) compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation (PN) process. Results showed that FA removal efficiency (FRE) decreased from 90.22 to 23.11% when FA concentrations in the reactor were increased from 0 to 162.30 mg/L, and that molecular size, degree of aromatization and humification of the effluent FA macromolecules all increased after treatment. Microbial population analysis indicated that the proliferation of the Comamonas, OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations ( < 50.59 mg/L), promoting the degradation and removal of macromolecular FA. In addition, the sustained increase in external FA may decrease the abundance of above functional microorganisms, resulting in a rapid drop in FRE. Furthermore, from the genetic perspective, the elevated FA levels restricted carbohydrate (ko00620, ko00010 and ko00020) and nitrogen (HAO, AMO, NIR and NOR ) metabolism-related pathways, thereby impeding FA removal and total nitrogen loss associated with N2O emissions.(c) 2023 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ENVIRONMENTAL SCIENCES
ISSN: 1001-0742
Year: 2024
Volume: 135
Page: 318-331
6 . 9 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: