Abstract:
针对景区手写诗词存在背景纹理复杂、字体尺寸及风格多样等特点导致景区游客难以识别手写诗词的问题,首先分析研究景区手写诗词的识别场景,设计景区手写诗词检测网络(detection of poetry in scenic areas-network,DPSA-Net)以提取景区手写诗词不同尺度的特征,并结合手写诗词字符间的链接依赖关系实现景区手写诗词检测;其次,设计了卷积循环聚合网络(convolution recurrent agregation network,CRA-Net)以对景区手写诗词进行识别,结合卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络提取手写诗词图像的序列特征,并通过聚合交叉熵(aggregation cross-entropy,ACE)实现特征向文本的转换;最后,结合景区知识图谱对CRA-Net输出的景区手写诗词文本进行校正,进而提高景区手写诗词的识别准确率。实验结果表明,通过景区手写诗词矫正技术对CRA-Net的识别结果矫正后,识别准确率达到了79.04%,同时本文技术具有较好的抗干扰能力和良好的应用前景。
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2024
Issue: 03
Page: 1-9
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: