• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

冀俊忠 (冀俊忠.) | 于乐 (于乐.) | 雷名龙 (雷名龙.)

Abstract:

为了提升现有脑疾病分类方法提取三维空间特征的能力,提出一种融合3D注意力卷积与自监督学习的分类模型。首先,提出一种基于残差结构的3D注意力卷积神经网络来提取空间特征,利用3D注意力机制区分体素数据中不同空间位置的重要性;其次,利用空间特征构建一个基于自监督学习的多任务学习框架,通过基于空间连续性的自监督辅助任务来进一步挖掘体素的空间依赖关系;最后,通过辅助任务与目标分类任务的联合训练优化神经网络参数,进而提升分类模型的性能。在ABIDE-Ⅰ和ABIDE-Ⅱ数据集上的实验结果表明,所提方法具有优异的分类性能,分类结果也具备良好的可解释性。

Keyword:

空间特征 三维卷积神经网络 体素数据 注意力机制 脑疾病分类 自监督学习

Author Community:

  • [ 1 ] 北京工业大学北京人工智能研究院
  • [ 2 ] 北京工业大学信息学部多媒体与智能软件技术北京重点实验室

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

北京工业大学学报

Year: 2024

Issue: 03

Page: 1-9

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 17

Online/Total:595/10509043
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.