Indexed by:
Abstract:
The integration of deep learning (DL) and digital breast tomosynthesis (DBT) presents a unique opportunity to improve the reliability of breast cancer (BC) detection and diagnosis while accommodating novel imaging techniques. This study utilizes the publicly available Mammographic Image Analysis Society (MIAS) database v1.21 to evaluate DL algorithms in identifying and categorizing cancerous tissue. The dataset has undergone preprocessing and has been confirmed to be of exceptional quality. Transfer learning techniques are employed with three pre-trained models - MobileNet, Xception, DenseNet, and MobileNet LSTM - to improve performance on the target task. Stacking ensemble learning techniques will be utilized to combine the predictions of the best-performing models to make the final prediction for the presence of BC. The evaluation will measure the performance of each model using standard evaluation metrics, including accuracy (ACC), precision (PREC), recall (REC), and F1-score (F1-S). This study highlights the potential of DL in enhancing diagnostic imaging and advancing healthcare. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2024.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1876-1100
Year: 2024
Volume: 1134
Page: 181-192
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: