Indexed by:
Abstract:
Multivariate time series forecasting plays an important role in many domain applications, such as air pollution forecasting and traffic forecasting. Modeling the complex dependencies among time series is a key challenging task in multivariate time series forecasting. Many previous works have used graph structures to learn inter-series correlations, which have achieved remarkable performance. However, graph networks can only capture spatio-temporal dependencies between pairs of nodes, which cannot handle high-order correlations among time series. We propose a Dynamic Hypergraph Structure Learning model (DHSL) to solve the above problems. We generate dynamic hypergraph structures from time series data using the K-Nearest Neighbors method. Then a dynamic hypergraph structure learning module is used to optimize the hypergraph structure to obtain more accurate high-order correlations among nodes. Finally, the hypergraph structures dynamically learned are used in the spatio-temporal hypergraph neural network. We conduct experiments on six real-world datasets. The prediction performance of our model surpasses existing graph network-based prediction models. The experimental results demonstrate the effectiveness and competitiveness of the DHSL model for multivariate time series forecasting. IEEE
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE Transactions on Big Data
ISSN: 2332-7790
Year: 2024
Issue: 4
Volume: 10
Page: 1-13
7 . 2 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: