Indexed by:
Abstract:
GuessWhich is an engaging visual dialogue game that involves interaction between a Questioner Bot (QBot) and an Answer Bot (ABot) in the context of image-guessing. In this game, QBot’s objective is to locate a concealed image solely through a series of visually related questions posed to ABot. However, effectively modeling visually related reasoning in QBot’s decision-making process poses a significant challenge. Current approaches either lack visual information or rely on a single real image sampled at each round as decoding context, both of which are inadequate for visual reasoning. To address this limitation, we propose a novel approach that focuses on visually related reasoning through the use of a mental model of the undisclosed image. Within this framework, QBot learns to represent mental imagery, enabling robust visual reasoning by tracking the dialogue state. The dialogue state comprises a collection of representations of mental imagery, as well as representations of the entities involved in the conversation. At each round, QBot engages in visually related reasoning using the dialogue state to construct an internal representation, generate relevant questions, and update both the dialogue state and internal representation upon receiving an answer. Our experimental results on the VisDial datasets (v0.5, 0.9, and 1.0) demonstrate the effectiveness of our proposed model, as it achieves new state-of-the-art performance across all metrics and datasets, surpassing previous state-of-the-art models. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2024
Volume: 14473 LNAI
Page: 554-565
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: