Abstract:
混沌多项式展开是一种广泛使用的方法,用于建立功能函数的代理模型,以方便对随机结构进行不确定性量化及可靠度分析。然而,在某些可靠度分析问题中经常需要混沌多项式展开模型的概率密度函数作为随机变量的完整表达,但在一般情况下难以准确计算混沌多项式展开模型的概率密度函数。为研究二阶混沌多项式展开模型的概率密度函数计算方法,通过正交变换消除模型中的交叉项,推导出二阶混沌多项式展开其特征函数的显式表达式,然后利用快速傅里叶变换求得二阶混沌多项式展开的概率密度函数,并通过数值算例验证了所提方法在结构可靠度应用中的准确性和适用性。研究结果表明:所提方法能获得二阶混沌多项式模型的概率密度函数与累积分布函数,计算结果与理论精确解吻合,获得的非中心卡方分布的累积分布函数尾部可与精确值在10-8水平上保持一致,且适用于高维情形。同时,所提方法能高效准确地给出不同响应阈值下的结构失效概率,即使是在10-8水平上的小失效概率情形。相较于前四阶矩方法,所提方法计算精度更高,对于输出变量具有强非高斯性的情况依然适用。此外,由于二阶混沌多项式展开模型代理强非线性功能函数存在一定误差,因此所提方法对于强非线性问题存在一定局限性。
Keyword:
Reprint Author's Address:
Email:
Source :
防灾减灾工程学报
Year: 2024
Issue: 01
Volume: 44
Page: 28-38
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: