Indexed by:
Abstract:
Insomnia is the most common sleep disorder linked with adverse long-term medical and psychiatric outcomes. Automatic sleep staging plays a crucial role in aiding doctors to diagnose insomnia disorder. Only a few studies have been conducted to develop automatic sleep staging methods for insomniacs, and most of them have utilized transfer learning methods, which involve pre-training models on healthy individuals and then fine-tuning them on insomniacs. Unfortunately, significant differences in feature distribution between the two subject groups impede the transfer performance, highlighting the need to effectively integrate the features of healthy subjects and insomniacs. In this paper, we propose a dual-teacher cross-domain knowledge transfer method based on the feature-based knowledge distillation to improve the performance of sleep staging for insomniacs. Specifically, the insomnia teacher directly learns from insomniacs and feeds the corresponding domain-specific features into the student network, while the health domain teacher guide the student network to learn domain-generic features. During the training process, we adopt the OFD (Overhaul of Feature Distillation) method to build the health domain teacher. We conducted the experiments to validate the proposed method, using the Sleep-EDF database as the source domain and the CAP-Database as the target domain. The results demonstrate that our method surpasses advanced techniques, achieving an average sleep staging accuracy of 80.56% on the CAP-Database. Furthermore, our method exhibits promising performance on the private dataset. © 2013 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE Journal of Biomedical and Health Informatics
ISSN: 2168-2194
Year: 2024
Issue: 3
Volume: 28
Page: 1730-1741
7 . 7 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: