Indexed by:
Abstract:
Widespread use of nanomaterials raises concerns. The underlying mechanism by which graphene oxide (GO) nanoparticles causes poor settleability of activated sludge remains unclear. To explore this mechanism, three reactors with different GO concentrations were established. Extended Derjaguin-Landau-Verwey-Overbeek theory indicated that GO destroyed the property of extracellular polymeric substances (EPS), increasing the energy barrier between bacteria. Low levels of uronic acid and hydrogen bonding in exopolysaccharide weakened the EPS gelation increasing aggregation repulsion. Lager amounts of hydrophilic amino acid and looser structure of extracellular proteins for exposing inner hydrophilic groups significantly contributed to the hydrophilicity of EPS. Both changes implied deterioration in EPS structure under GO stress. Metagenome demonstrated a decrease in genes responsible for capsular polysaccharide colonization and genes regulated the translocation of loose proteins were increased, which increased repulsion between bacteria. This study elucidated that changes in EPS secretion under GO exposure are the underlying causes of poor settleability. © 2024 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Bioresource Technology
ISSN: 0960-8524
Year: 2024
Volume: 399
1 1 . 4 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: