Indexed by:
Abstract:
Recent advances in event-based research prioritize sparsity and temporal precision. Approaches learning sparse point-based representations through graph CNNs (GCN) become more popular. Yet, these graph techniques hold lower performance than their frame-based counterpart due to two issues: (i) Biased graph structures that don’t properly incorporate varied attributes (such as semantics, and spatial and temporal signals) for each vertex, resulting in inaccurate graph representations. (ii) A shortage of robust pretrained models. Here we solve the first problem by proposing a new event-based GCN (EDGCN), with a dynamic aggregation module to integrate all attributes of vertices adaptively. To address the second problem, we introduce a novel learning framework called cross-representation distillation (CRD), which leverages the dense representation of events as a cross-representation auxiliary to provide additional supervision and prior knowledge for the event graph. This frame-to-graph distillation allows us to benefit from the large-scale priors provided by CNNs while still retaining the advantages of graph-based models. Extensive experiments show our model and learning framework are effective and generalize well across multiple vision tasks. © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 2159-5399
Year: 2024
Issue: 2
Volume: 38
Page: 1492-1500
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: