Indexed by:
Abstract:
In this work, a series of x wt% Pt@TiO2 (x = 0.18, 0.42, and 0.84) catalysts with highly dispersed Pt nanoparticles (NPs) are synthesized via pyrolysis method using Ti-based metal-organic frameworks (MOFs) as precursors. Physicochemical properties of the catalysts are characterized by a number of analytical techniques. It is shown that all samples possess mesoporous structure with surface area of 59–75.6 m2/g, thus can suppress the aggregation of Pt NPs, and enhance toluene adsorption and diffusion. The 0.84 wt% Pt@TiO2 catalyst exhibits the best catalytic performance for toluene oxidation (T90% =150 °C at space velocity = 20,000 mL/ (g h)), which is attributed to the higher surface area, abundant adsorbed oxygen and Pt0 species, and strong interaction between Pt NPs and TiO2. In addition, the possible reaction mechanism of toluene oxidation is proposed based on in situ DRIFTS technique. © 2024 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Catalysis Today
ISSN: 0920-5861
Year: 2024
Volume: 437
5 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: