• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, J. (Yang, J..) | Jiang, Y. (Jiang, Y..) | Chu, P. (Chu, P..) | Lv, L. (Lv, L..) | Tao, J. (Tao, J..) | Wang, Z. (Wang, Z..) | Liu, Y. (Liu, Y..) | Dai, H. (Dai, H..) | Deng, J. (Deng, J..)

Indexed by:

EI Scopus SCIE

Abstract:

In this work, a series of x wt% Pt@TiO2 (x = 0.18, 0.42, and 0.84) catalysts with highly dispersed Pt nanoparticles (NPs) are synthesized via pyrolysis method using Ti-based metal-organic frameworks (MOFs) as precursors. Physicochemical properties of the catalysts are characterized by a number of analytical techniques. It is shown that all samples possess mesoporous structure with surface area of 59–75.6 m2/g, thus can suppress the aggregation of Pt NPs, and enhance toluene adsorption and diffusion. The 0.84 wt% Pt@TiO2 catalyst exhibits the best catalytic performance for toluene oxidation (T90% =150 °C at space velocity = 20,000 mL/ (g h)), which is attributed to the higher surface area, abundant adsorbed oxygen and Pt0 species, and strong interaction between Pt NPs and TiO2. In addition, the possible reaction mechanism of toluene oxidation is proposed based on in situ DRIFTS technique. © 2024 Elsevier B.V.

Keyword:

Pt NPs Pt@TiO2 catalyst Toluene oxidation MOFs Mesoporous structure

Author Community:

  • [ 1 ] [Yang J.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Jiang Y.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Chu P.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Lv L.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Tao J.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Wang Z.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 7 ] [Liu Y.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 8 ] [Dai H.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 9 ] [Deng J.]Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Catalysis Today

ISSN: 0920-5861

Year: 2024

Volume: 437

5 . 3 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:346/10804084
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.