Indexed by:
Abstract:
In many application problems such as the electromagnetics, the unknowns are usually defined at the edges to satisfy the continuity requirement. This paper develops the first positivity-preserving edge-centred finite volume scheme for diffusion problems on general unstructured polygonal meshes. The edge-centred unknowns are primary and have associated finite volume equations. The cell-vertex and cell-centred unknowns are treated as auxiliary ones and are interpolated by the primary unknowns, making the final scheme purely edge-centred. The scheme has a fixed stencil due to the fixed decomposition of the co-normal, which makes the scheme very easy to implement. The positivity-preserving property is rigorously proved. Numerical experiments indicate that the scheme has second-order accuracy and positivity for heterogeneous and anisotropic problems on highly distorted meshes. © The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024.
Keyword:
Reprint Author's Address:
Email:
Source :
Computational and Applied Mathematics
ISSN: 2238-3603
Year: 2024
Issue: 4
Volume: 43
2 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: