• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Tan, Y. (Tan, Y..) | Dai, F. (Dai, F..) | Zhao, Z. (Zhao, Z..) | Zhou, J. (Zhou, J..) | Cheng, W. (Cheng, W..)

Indexed by:

Scopus SCIE

Abstract:

Long-term irrigation promotes the infiltration of water in the thick, stratified loess layer, significantly raising the groundwater table and triggering a series of landslides in loess platform areas. The soil–water characteristic curve (SWCC) of loess buried at different depths affects the unsaturated infiltration process and is intricately connected to the soil’s microstructure. The SWCCs, scanning electron microscope (SEMs), and pore size distributions (PSDs) for five sets of undisturbed loess samples at depths ranging from 3.4 to 51.9 m are shown in this paper. The results indicate that the fitting parameter air entry value (AEV) of the SWCC rises from 13.67 kPa to 40.19 kPa as the depth increases from 3.4 to 51.9 m. And the saturated volumetric water content drops by 10.9%, with a notable SWCC shape difference between the transition and residual zones observed. Additionally, the total porosity of undisturbed loess falls by 12% when the depth increases from 3.4 to 51.9 m, while the macropores and mesopores reduce by 3.6% and 12.1%, respectively. These findings highlight the control of the pore structure on the SWCC and emphasize the correspondence between the SWCC and PSD. The conclusions also illustrate that the compaction effect changes the microstructure characteristics of loess, thereby affecting the soil’s water retention behavior. © 2024 by the authors.

Keyword:

pore size distribution buried depth undisturbed loess pore structure unsaturated hydraulic characteristics

Author Community:

  • [ 1 ] [Tan Y.]Faculty of Urban Construction, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Dai F.]Faculty of Urban Construction, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Zhao Z.]College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
  • [ 4 ] [Zhou J.]Faculty of Urban Construction, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Cheng W.]Faculty of Urban Construction, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Cheng W.]PowerChina Kunming Engineering Corporation Limited, Kunming, 650051, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Applied Sciences (Switzerland)

ISSN: 2076-3417

Year: 2024

Issue: 8

Volume: 14

2 . 7 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:722/10672651
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.