• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qadir, N.U. (Qadir, N.U..) | Bahaidarah, H. (Bahaidarah, H..) | Zhipeng, Q. (Zhipeng, Q..) | Bao, L.Z. (Bao, L.Z..)

Indexed by:

Scopus SCIE

Abstract:

The design integration of absorption and adsorption cooling systems is a recently emerging research field in which the inherent advantages of both these systems are intended to be combined so as to maximize system performance. However, a vast majority of the conventional integration approaches reported in the literature still suffer from the following drawbacks: (a) the inability to provide a continuous cooling effect of the integrated design during the switching period of the adsorption component, (b) the lack of incorporation of the mass/heat recovery cycles and its subsequent effects upon the integrated performance, and (c) the lack of functional dependence of all thermodynamic variables including heat capacities and adsorption enthalpy upon operational parameters such as temperature and pressure. This study presents the first attempt of a numerically validated performance prediction of such an integrated system with parallel functionality to facilitate a continuous cooling operation. An empirical model of mass recovery cycle has been formulated for the very first time which adequately describes the sorption dynamics during mass transfer. All thermodynamic variables have been expressed as functions of operational parameters during the cooling cycle. For a mean driving temperature predicted to be as low as 38 °C and a mean cycle time of 11.82 min, the proposed integrated design has been predicted to yield a cycle-averaged specific cooling power of 48.93 W kg−1 and a minimum achievable coefficient of performance of 0.74 compared to the corresponding values of 27.64 W kg−1 and 0.57 for the benchmark stand-alone silica gel/water adsorption chiller. © King Fahd University of Petroleum & Minerals 2024.

Keyword:

Coefficient of performance Specific cooling power Absorption–adsorption Switching Integrated

Author Community:

  • [ 1 ] [Qadir N.U.]School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
  • [ 2 ] [Bahaidarah H.]Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
  • [ 3 ] [Zhipeng Q.]Department of Refrigeration and Cryogenics, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
  • [ 4 ] [Bao L.Z.]Department of Refrigeration and Cryogenics, Faculty of Environment and Life, Beijing University of Technology, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Arabian Journal for Science and Engineering

ISSN: 2193-567X

Year: 2024

Issue: 11

Volume: 49

Page: 15541-15564

2 . 9 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:700/10559770
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.