Indexed by:
Abstract:
The active graphite felt (GF) catalytic layer was effectively synthesized through a wet ultrasonic impregnationcalcination method, modified with CB and PTFE, and implemented in a pioneering side-aeration electrochemical in-situ H2O2 reactor. The optimal mass ratio (CB: PTFE 1:4) for the modified cathode catalytic layer was determined using a single-factor method. Operating under optimum conditions of initial pH 5, 0.5 L/min air flow, and a current density of 9 mA/cm2, the system achieved a remarkable maximum H2O2 accumulation of 560 mg/L, with the H2O2 production capacity consistently exceeding 95 % over 6 usage cycles. The refined mesoporous structure and improved three-phase interface notably amplified oxygen transfer, utilization, and H2O2 yield. Side aeration led to an oxygen concentration near the cathode reaching 20 mg/L, representing a fivefold increase compared to the 3.95 mg/L achieved with conventional bottom aeration. In the final application, the reaction system exhibited efficacy in the degradation of landfill leachate concentrate. After a 60-minute reaction, complete removal of chroma was attained, and the TOC degradation rate surpassed 60 %, marking a sixfold improvement over the conventional system. These results underscore the substantial potential of the system in H2O2 synthesis and environmental remediation.
Keyword:
Reprint Author's Address:
Source :
WASTE MANAGEMENT
ISSN: 0956-053X
Year: 2024
Volume: 186
Page: 35-45
8 . 1 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: