Indexed by:
Abstract:
This study successfully established Iron Sulfide-Mediated mixotrophic Partial Denitrification/Anammox system, achieving nitrogen and phosphorus removal efficiency of 97.26% and 78.12%, respectively, with COD/NO3--N of 1.00. Isotopic experiments and X-ray Photoelectron Spectroscopy analysis confirmed that iron sulfide enhanced autotrophic Partial Denitrification performance. Meanwhile, various sulfur valence states functioned as electron buffers, reinforcing nitrogen and sulfur cycles. Microbial community analysis indicated reduced heterotrophic denitrifiers (OLB8, OLB13) under lower COD/NO3--N, creating more niche space for autotrophic bacteria and other heterotrophic denitrifiers. The prediction of functional genes illustrated that iron Sulfide upregulated genes related to carbon metabolism, denitrification, anammox and sulfur oxidation-reduction, facilitating the establishment of carbon-nitrogen-sulfur cycle. Furthermore, this cycle primarily produced electrons via nicotinamide adenine dinucleotide and sulfur oxidation-reduction processes, subsequently utilized within the electron transfer chain. In summary, the Partial Denitrification/Anammox system under the influence of iron sulfide achieved effient nitrogen removal by expediting electron transfer through the carbon-nitrogen-sulfur cycle.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2024
Volume: 403
1 1 . 4 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: