Indexed by:
Abstract:
Biodegradable plastics such as Poly (butylene adipate-co-terephthalate) (PBAT) have been extensively utilized in numerous fields. However, post-consumption, PBAT tends to pollute the environment and waste resources. Herein, a novel approach employing a 1,4-butanediol-alkali combined method for the hydrolysis of PBAT is introduced. At 130 degrees C, with a reaction time of 60 min, the hydrolysis rate of PBAT exceeds 99 %. Subsequently, a two-step synthesis rapidly produces a foam nickel-supported NiOOH catalyst for the electrocatalytic reformation of the PBAT hydrolysate into higher-value chemicals (succinate salts) at an impressive current density of 100 mA cm(-2) at 1.43 V (vs. RHE) and a Faradaic efficiency of 97.6 %. Experimental results and density functional theory calculations have elucidated the active state changes of the foam nickel-supported NiOOH catalyst and the intermediates in the oxidation of 1,4-butanediol to succinate, alongside the reaction mechanism. This study offers a viable approach for the degradation of PBAT plastic through a 1,4-butanediol-alkali method and the rapid preparation of a foam nickel-supported NiOOH electrocatalyst, achieving the upgraded recycling of post-consumer biodegradable PBAT plastic.
Keyword:
Reprint Author's Address:
Email:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2024
Volume: 486
1 5 . 1 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: