• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Shengfei (Zhang, Shengfei.) | Han, Qiang (Han, Qiang.) (Scholars:韩强) | Jiang, Kejie (Jiang, Kejie.) | Lu, Xinzheng (Lu, Xinzheng.) | Wang, Guoquan (Wang, Guoquan.)

Indexed by:

EI Scopus SCIE

Abstract:

Dynamic displacement response is an essential indicator for assessing structural state and performance. Vision-based structural displacement monitoring is considered as a promising approach. However, the current vision-based methods usually only focus on certain application scenarios. This study introduces a Sparse Bayesian Learning-based (SBL) algorithm to enhance robustness, accuracy, and computational efficiency in target tracking. Furthermore, a robust and versatile Vision-based Dynamic Displacement Monitoring System (VDDMS) was developed, capable of monitoring displacements of varying application scenarios. The robustness of the proposed algorithm under changing illumination conditions is validated through a specially designed indoor experiment. The feasibility of field application of VDDMS is confirmed through an outdoor shear wall shaking table test. Furthermore, a large-scale bridge shaking table test is conducted to evaluate the reliability and versatility of VDDMS in monitoring natural feature targets on large structures subjected to different seismic excitations. The root mean square error, when compared to laser displacement sensors, ranges from 0.2% to 2.9% of the peak-to-peak displacement. Additionally, VDDMS accurately identifies multi-order frequencies in bridge structures. The study investigates the influence of initial template selection on accuracy, highlighting the significance of distinctive texture features. Moreover, two error evaluation schemes are proposed to quickly assess the reliability of vision-based displacement sensing technologies in various application scenarios.

Keyword:

Shaking table tests Illumination changes Dynamic displacement monitoring Large-scale structures Vision-based sensing technology Natural feature targets

Author Community:

  • [ 1 ] [Zhang, Shengfei]Beijing Univ Technol, Natl Key Lab Bridge Safety & Resilience, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Qiang]Beijing Univ Technol, Natl Key Lab Bridge Safety & Resilience, Beijing 100124, Peoples R China
  • [ 3 ] [Jiang, Kejie]Beijing Univ Technol, Natl Key Lab Bridge Safety & Resilience, Beijing 100124, Peoples R China
  • [ 4 ] [Lu, Xinzheng]Tsinghua Univ, Dept Civil Engn, Key Lab Civil Engn Safety & Durabil China Educ Min, Beijing 100084, Peoples R China
  • [ 5 ] [Wang, Guoquan]Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA

Reprint Author's Address:

  • [Han, Qiang]Beijing Univ Technol, Natl Key Lab Bridge Safety & Resilience, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING

ISSN: 2190-5452

Year: 2024

Issue: 8

Volume: 14

Page: 1819-1837

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:809/10682322
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.