• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhong, Ning (Zhong, Ning.) | Bai, Youliang (Bai, Youliang.) | Xu, Hongyan (Xu, Hongyan.) | Shi, Wei (Shi, Wei.) | Fan, Jiawei (Fan, Jiawei.) | Wei, Xiaotong (Wei, Xiaotong.) | Liang, Lianji (Liang, Lianji.) | Jiang, Hanchao (Jiang, Hanchao.)

Indexed by:

Scopus SCIE

Abstract:

Five M s 7.0 earthquakes (Wenchuan, Yushu, Lushan, Jiuzhaigou and Maudo) have occurred on the eastern Tibetan Plateau since 2008, and > 20 historical earthquakes (M s >= 5.0) have also been recorded, demonstrating the strong seismic activity prevalent in this region. Owing to the geomorphology of the region, consisting of alpine valleys with a lack of Quaternary deposits, it is difficult to conduct paleo-earthquake research through the excavation of trenches. Lacustrine sediments are regarded as the most suitable archives for paleo-earthquake studies because they often comprise a detailed, long-term, and continuous environmental record. To assess the seismic activity of the Diexi, we studied a well-exposed outcrop of Xinmocun lacustrine sediments that included three sections (XMCI (11.5 m), XMCII (5.6 m), and XMCIII (11 m)) near Diexi Lake, moving from a lake shore to lake center environment, at the intersection between the Minjiang fault and Songpinggou fault. Taking into account the geodynamic setting of the area and its known tectonic activity, soft-sediment deformation structures, including load and flame structures, injection structures, ball structures, pseudo-nodules, boudinage structures, plunged sediment mixture, liquefied breccia and micro-faults, discovered within the sections are interpreted as seismites. High-resolution grain-size and magnetic susceptibility indicators were used to obtain a continuous record of the changes in physical properties within the three sections enabling the recognition of additional seismic events that did not result in soft-sediment deformation structures. Rapidly deposited layers with underlying soft-sediment deformation structures in the sections record five (XMCI, XMCII and XMCIII) seismic events; these comprise siliciclastic-enriched sandy sediment fluxes from earthquake-triggered landslides or dust of siliciclastic-enriched clastic materials. Isolated rapidly deposited layers (without underlying soft-sediment deformation structures) record 18 (XMCII), 12 (XMCI), and 21 (XMCIII) additional earthquake-induced inputs of detrital material into the lake. Optically stimulated luminescence and 14 C dating of the XMCI, XMCII, and XMCIII sections indicate continuous sediment deposition from 19.4-9.9 ka, 15.5-10.1 ka, and 18.7-10.6 ka, respectively, and the seismic events recorded in these sections can be cross-correlated within the age error range. Hence, there are a total of 30 seismic events recorded within the Xinmocun sediments during the period 18.6-10 ka, suggests a weakly periodic pattern with an apparent recurrence time of similar to 280 years. The Minjiang fault and Songpinggou fault are Holocene active faults with a risk of causing strong earthquakes. Due to the Diexi area is located at the intersection of the Minjiang fault and Songpinggou fault, and has frequent seismic activity, suggest a high seismic risk in the future.

Keyword:

Seismic activity Lacustrine sediments Eastern Tibetan Plateau Rapidly deposited layers Xinmocun Soft-sediment deformation structures

Author Community:

  • [ 1 ] [Zhong, Ning]Chinese Acad Geol Sci, Inst Geomech, Key Lab Act Tecton & Geol Safety, Minist Nat Resources, Beijing 100081, Peoples R China
  • [ 2 ] [Zhong, Ning]China Geol Survey, Res Ctr Neotectonism & Crustal Stabil, Beijing 100081, Peoples R China
  • [ 3 ] [Bai, Youliang]Northwest Inst Nucl Technol, Xian 710024, Peoples R China
  • [ 4 ] [Xu, Hongyan]China Earthquake Adm, Inst Geol, State Key Lab Earthquake Dynam, Beijing 100029, Peoples R China
  • [ 5 ] [Shi, Wei]China Earthquake Adm, Inst Geol, State Key Lab Earthquake Dynam, Beijing 100029, Peoples R China
  • [ 6 ] [Fan, Jiawei]China Earthquake Adm, Inst Geol, State Key Lab Earthquake Dynam, Beijing 100029, Peoples R China
  • [ 7 ] [Wei, Xiaotong]China Earthquake Adm, Inst Geol, State Key Lab Earthquake Dynam, Beijing 100029, Peoples R China
  • [ 8 ] [Jiang, Hanchao]China Earthquake Adm, Inst Geol, State Key Lab Earthquake Dynam, Beijing 100029, Peoples R China
  • [ 9 ] [Liang, Lianji]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 10 ] [Zhong, Ning]Chinese Acad Geol Sci, Inst Geomech, 11 Minzu Univ South Rd, Beijing 100081, Peoples R China
  • [ 11 ] [Jiang, Hanchao]China Earthquake Adm, Inst Geol, 1 Huayanli, Beijing 100029, Peoples R China

Reprint Author's Address:

  • [Zhong, Ning]Chinese Acad Geol Sci, Inst Geomech, 11 Minzu Univ South Rd, Beijing 100081, Peoples R China;;[Jiang, Hanchao]China Earthquake Adm, Inst Geol, 1 Huayanli, Beijing 100029, Peoples R China;;

Show more details

Related Keywords:

Source :

JOURNAL OF ASIAN EARTH SCIENCES

ISSN: 1367-9120

Year: 2024

Volume: 267

3 . 0 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:1167/10991135
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.