Abstract:
烟气含氧量的精准控制对城市固废焚烧处理厂的稳定高效运行具有重要意义.然而,由于固废焚烧过程固有的非线性和不确定性,难以实现烟气含氧量的有效控制.为此,文中提出一种数据驱动的城市固废焚烧过程烟气含氧量预测控制方法.首先,设计了一种基于自组织长短期记忆(SOLSTM)网络的预测模型,结合神经元活跃度与显著性动态调整隐含层结构,提高了烟气含氧量的预测精度.其次,为了保证优化效率,利用梯度下降法求解控制律.此外,基于李雅普诺夫理论分析了所提方法的稳定性,确保控制器在实际应用过程中的可靠性.最后,基于实际工业数据对所提出的控制方法进行了验证,结果表明,提出的数据驱动预测控制方法能实现对城市固废焚烧过程烟气含氧量的稳定高效控制.
Keyword:
Reprint Author's Address:
Email:
Source :
控制理论与应用
ISSN: 1000-8152
Year: 2024
Issue: 3
Volume: 41
Page: 484-495
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: