• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Shu-Qing (Wang, Shu-Qing.) | Zheng, Hong (Zheng, Hong.) (Scholars:郑宏) | Zhang, Zhi-Hong (Zhang, Zhi-Hong.)

Indexed by:

EI Scopus SCIE

Abstract:

The numerical solution of the hydro-mechanical-chemical (HMC) fully coupled equations in porous media faces significant challenges due to spurious oscillation in pore pressure and concentration caused by locking and convection dominance. This study proposes a combination of two different discretization schemes: (1) the Galerkin discretization on the primal mesh for the soil skeleton deformation, and (2) the finite volume method (FVM) on the dual mesh for solute transport and fluid flow, named G-FVM, where the approximations of skeleton displacement (u), pore pressure (p), and concentration(c) are established by NMM, to reflect compressible and incompressible deformation. Typical examples of chemo-osmotic and chemo-mechanical consolidation are simulated to verify the accuracy of the G-FVM. Through the numerical tests of 1D and 2D chemo-mechanical consolidation problems, it is evident that when convection-dominated solute transport is associated with Biot's consolidation law, two different numerical oscillations are observed in both pore pressure and concentration if only the Galerkin method is applied. Nevertheless, the G-FVM did not produce oscillations in either pore pressure or concentration and is free of locking and convection dominance, accurately predicting the response of low-permeability porous media.

Keyword:

Galerkin 's discretization Porous media Hydro-mechanical-chemical coupling Numerical manifold method Finite volume method

Author Community:

  • [ 1 ] [Wang, Shu-Qing]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Zhi-Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS

ISSN: 0955-7997

Year: 2024

Volume: 166

3 . 3 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:719/10654496
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.