Indexed by:
Abstract:
Chaotic response is a robust effect in natural systems, and it is usually unfavorable for applications owing to uncertainty. In this paper, we propose several control strategies to stabilize the chaotic rhythm of a fractional piecewise-smooth oscillator. First, the Melnikov analysis is applied to the system, and the critical condition for the occurrence of homoclinic chaos is scrupulously established. Then, by applying appropriate control mechanisms, including delayed feedback control and periodic excitations, to the system, we can eliminate the zeros in the original Melnikov function, which serve as sufficient criteria for chaos suppression. Numerical simulations further demonstrate the accuracy of the theoretical results and the validity of the control schemes. Finally, the effects of parameter variations on the efficiency of control strategies are investigated. Note that we use the complex Simpson formula to calculate the complicated Melnikov functions presented in this paper. The current work may open a new innovative path to detect and control the chaotic dynamics of fractional non-smooth models.
Keyword:
Reprint Author's Address:
Source :
CHINESE JOURNAL OF PHYSICS
ISSN: 0577-9073
Year: 2024
Volume: 90
Page: 885-900
5 . 0 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: