Indexed by:
Abstract:
This paper addresses the algebraic synthesis of novel single-loop 6R spatial mechanisms, enabling constant -1:1 or 1:1 velocity ratio transmission between two adjacent axes, whether parallel, intersecting, or skew. Based on the motion polynomial over dual quaternions, an algebraic synthesis method including four steps is presented to construct and optimize single-loop 6R spatial mechanisms with a constant transmission ratio of -1:1 or 1:1 between arbitrarily designated input and output axes. Using this method, several novel single-loop 6R spatial mechanisms for constant velocity transmission are constructed by designating different poses and rotation directions of the input and output axes. Kinematics analysis of single-loop 6R spatial mechanisms is implemented to verify their transmission characteristics. The results reveal that the generated 1-DOF singleloop 6R novel mechanisms can indeed transmit motion with a constant transmission ratio of -1:1 or 1:1 between two adjacent parallel, intersecting, or skew axes. This work provides a framework for further investigation on single-loop mechanisms with special transmission characteristics.
Keyword:
Reprint Author's Address:
Email:
Source :
MECHANISM AND MACHINE THEORY
ISSN: 0094-114X
Year: 2024
Volume: 200
5 . 2 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: