Indexed by:
Abstract:
In motor imagery tasks, the brain often involves simultaneous activation of multiple regions, and traditional convolutional neural networks struggle to accurately represent the coordinated neural activity across these regions. Graph convolutional network GCN is suitable for representing the collaborative tasks of different brain regions by considering the connections and relationships between nodes (brain regions) in graph data. Attention-fused filter bank dual-view GCN( AFB-DVGCN) was proposed. A dual-branch network was constructed using filter banks to extract temporal and spatial information from different frequency bands. Information complementarity was achieved by a convolutional spatial feature extraction method for dual-view graphs. In order to improve the classification accuracy, the effective channel attention mechanism was utilized to enhance features and capture the interaction information between different feature maps. Validation results in the publicly available datasets BCI Competition IV-2a and OpenBMI show that AFB-DVGCN has achieved good classification performance, and the classification accuracy is significantly higher than that of the comparison networks. © 2024 Zhejiang University. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Zhejiang University (Engineering Science)
ISSN: 1008-973X
Year: 2024
Issue: 7
Volume: 58
Page: 1326-1335 and 1356
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 15
Affiliated Colleges: