Indexed by:
Abstract:
Increasing urban traffic congestion and environmental pollution have led to the embrace of bike-sharing for its low-carbon convenience. This study enhances the operational efficiency and environmental benefits of bike-sharing systems by optimizing electronic fences (e-fences). Using bike-sharing order data from Shenzhen, China, a data-driven multi-objective optimization approach is proposed to design the sustainable dynamic capacity of e-fences. A dynamic planning model, solved with an improved Non-dominated Sorting Genetic Algorithm II (NSGA-II), adjusts e-fence capacities to match fluctuating user demand, optimizing resource utilization. The results show that an initial placement of 20 bicycles per e-fence provided a balance between cost efficiency and user convenience, with the enterprise cost being approximately 76,000 CNY and an extra walking distance for users of 15.1 m. The optimal number of e-fence sites was determined to be 40 based on the solution algorithm constructed in the study. These sites are strategically located in high-demand areas, such as residential zones, commercial districts, educational institutions, subway stations, and parks. This strategic placement enhances urban mobility and reduces disorderly parking.
Keyword:
Reprint Author's Address:
Email:
Source :
SUSTAINABILITY
Year: 2024
Issue: 14
Volume: 16
3 . 9 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: