Indexed by:
Abstract:
Affine Scale Invariant Feature Transform (ASIFT) is robust to scales, rotation, scaling and affine transformation. It could be used for face recognition with pose variation. However, ASIFT requires large data. Could we reduce the data of ASIFT and preserve the face recognition performance? In this paper, we propose an effective face recognition algorithm to combining the structural similarity (SSIM) and PCA-ASIFT (PCA-ASIFT&SSIM).First, we reduce ASIFT dimension using principal component analysis and get PCA-ASIFT. The PCA-ASIFT’s discriminative capability drops because of the dimension reduction. It brings about more false SIFT matching. We further introduce the SSIM to reduce the false matching. The experimental results show the efficiency of the proposed approach. © Springer International Publishing Switzerland 2014.
Keyword:
Reprint Author's Address:
Email:
Source :
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN: 0302-9743
Year: 2014
Volume: 8833
Page: 163-172
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: