• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Jingcheng (Wang, Jingcheng.) | Zhang, Yong (Zhang, Yong.) (Scholars:张勇) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.)

Indexed by:

EI Scopus SCIE

Abstract:

Graph convolutional networks (GCNs) are widely used in social computation such as urban traffic prediction. However, when faced with city-level forecasting challenges, the graph-based deep learning methods struggle to process large-scale multivariate data effectively. To address the challenges of limited scalability, a traffic prediction framework based on a hypergraph message passing network (HMSG) is proposed in this article. The model represents the urban transportation network with hypergraph, where nodes denote transportation hubs and hyperedges represent their relationship at geographical and feature level. Compared with pairwise edges, hyperedges are more scalable and flexible, providing a more descriptive representation of traffic information. The HMSG algorithm updates node and hyperedge features in two steps, facilitating effective and efficient integration of hidden spatial features across layers. The proposed framework is evaluated on large-scale historical datasets and demonstrates its completion of city-scale traffic prediction tasks. The results also show that it matches the accuracy of existing traffic prediction methods on small-scale datasets. This validates the potential of the traffic prediction model based on the HMSG algorithm for intelligent transportation applications.

Keyword:

Transportation Message passing traffic prediction Convolution Vectors Urban areas message passing Feature extraction hypergraph learning Predictive models Graph neural network (GNN)

Author Community:

  • [ 1 ] [Wang, Jingcheng]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, Yongli]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

ISSN: 2329-924X

Year: 2024

Issue: 6

Volume: 11

Page: 7103-7113

5 . 0 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 17

Affiliated Colleges:

Online/Total:403/10633425
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.