• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Mengxing (Li, Mengxing.) | Quek, Xiu Kun (Quek, Xiu Kun.) | Suo, Hongli (Suo, Hongli.) | Wuu, Delvin (Wuu, Delvin.) | Lee, Jing Jun (Lee, Jing Jun.) | Teh, Wei Hock (Teh, Wei Hock.) | Wei, Fengxia (Wei, Fengxia.) | Made, Riko I. (Made, Riko I..) | Tan, Dennis Cheng Cheh (Tan, Dennis Cheng Cheh.) | Ng, Si Rong (Ng, Si Rong.) | Wei, Siyuan (Wei, Siyuan.) | Low, Andre Kai Yuan (Low, Andre Kai Yuan.) | Hippalgaonkar, Kedar (Hippalgaonkar, Kedar.) | Lim, Yee-Fun (Lim, Yee-Fun.) | Wang, Pei (Wang, Pei.) | Ng, Chee Koon (Ng, Chee Koon.)

Indexed by:

EI Scopus SCIE

Abstract:

High-strength, lightweight alloys are highly desired in the aerospace, automotive and marine industries. The optimization of such alloys is a multifaceted process, characterized by the consideration of diverse objectives and constraints. Various optimization methodologies exist, spanning from intricate first-principle approaches to the application of sophisticated machine learning algorithms. These algorithms might incorporate input features encompassing elemental composition, microstructural attributes, and thermodynamic properties to enhance prediction accuracies. In this work, we aim to streamline this complexity by employing solely the alloy's elemental composition as the input feature for the machine learning algorithm, improving the hardness while reducing the density of the alloy. We have curated a comprehensive database comprising 544 multi-principal element alloys and developed a robust surrogate model based on these compositions. This composition-driven model is subsequently coupled with principal component analysis (PCA) to facilitate the selection process. Remarkably, through a mere three iterations involving 14 samples, we successfully identified an alloy with an effective specific hardness surpassing the training database maximum by 8.6 %. The proposed composition-driven machine learning delineates a simplified approach for conducting optimization across multiple target material properties.

Keyword:

Machine learning Effective specific hardness Multi-principal element alloys Bayesian optimization

Author Community:

  • [ 1 ] [Li, Mengxing]Beijing Univ Technol, Coll Mat Sci & Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Suo, Hongli]Beijing Univ Technol, Coll Mat Sci & Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Mengxing]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 4 ] [Quek, Xiu Kun]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 5 ] [Wuu, Delvin]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 6 ] [Lee, Jing Jun]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 7 ] [Teh, Wei Hock]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 8 ] [Wei, Fengxia]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 9 ] [Made, Riko I.]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 10 ] [Tan, Dennis Cheng Cheh]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 11 ] [Ng, Si Rong]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 12 ] [Wei, Siyuan]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 13 ] [Low, Andre Kai Yuan]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 14 ] [Hippalgaonkar, Kedar]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 15 ] [Wang, Pei]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 16 ] [Ng, Chee Koon]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
  • [ 17 ] [Lim, Yee-Fun]ASTAR, Inst Sustainabil Chem Energy & Environm ISCE2, 1 Pesek Rd, Singapore 627833, Singapore
  • [ 18 ] [Low, Andre Kai Yuan]Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
  • [ 19 ] [Hippalgaonkar, Kedar]Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore

Reprint Author's Address:

  • [Wang, Pei]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore;;[Ng, Chee Koon]ASTAR, Inst Mat Res & Engn, Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore;;[Lim, Yee-Fun]ASTAR, Inst Sustainabil Chem Energy & Environm ISCE2, 1 Pesek Rd, Singapore 627833, Singapore;;

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF ALLOYS AND COMPOUNDS

ISSN: 0925-8388

Year: 2024

Volume: 1008

6 . 2 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:380/10650638
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.