• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Huang, Zhengdong (Huang, Zhengdong.) | Li, Pengfei (Li, Pengfei.) (Scholars:李鹏飞) | Zhang, Mingju (Zhang, Mingju.) | Zheng, Hong (Zheng, Hong.) | Teng, Zhuo (Teng, Zhuo.) | Wang, Shuo (Wang, Shuo.)

Indexed by:

EI Scopus SCIE

Abstract:

Considering the shortcomings of traditional tunnel support methods like shotcrete, including large rebound, poor water retention, and dust pollution, this paper proposes an innovative method to use mold-bag concrete (MBC) for initial tunnel support. Through macroscopic mechanical tests and microscopic structural characterization, a high-fluidity mix ratio of MBC suitable for actual construction conditions has been developed. To clarify the mechanical properties of MBC, compressive tests were conducted, leading to important conclusions: 1) Moldbags can significantly enhance the compressive strength and ductility of MBC. The specimens of mold-bag concrete of PP (MBC-PP) fail first but have good ductility, while specimens of mold-bag concrete of SNG-PET (MBC-SPET) have the best compressive performance but poor ductility; 2) Without pressurized drainage, mold-bags can increase the compressive strength of MBC due to the water permeability characteristics, with MBC-SPET having the largest increase in compressive strength, 69.1 %; 3) MBC-SPET tests show that increasing pressure has a better effect than increasing drainage time, with 90 s and 20 kg pressurized drainage being the best increase effect. These findings highlight the potential of MBC in addressing the limitations of traditional methods, providing strength enhancement, environmental benefits, and practical feasibility for tunnel support.

Keyword:

Curing age Pressurised drainage Mold-bag Compressive strength Damage pattern Mold-bag concrete (MBC)

Author Community:

  • [ 1 ] [Huang, Zhengdong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Pengfei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Mingju]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Teng, Zhuo]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Shuo]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Li, Pengfei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

CONSTRUCTION AND BUILDING MATERIALS

ISSN: 0950-0618

Year: 2024

Volume: 445

7 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:702/10708704
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.