Indexed by:
Abstract:
Piezoceramics with a high depolarization temperature (T-d) and excellent piezoelectricity are ideal materials for constructing advanced high-temperature piezoelectric energy harvesters (HT-PEHs). Herein, the Bi(Zn1/2Ti1/2)O-3 (BZT) unit with a large tetragonality was added into the BiScO3-PbTiO3 (BS-PT) high-temperature piezoelectric matrix under the guidance of morphotropic phase boundary (MPB) manipulation and a lattice distortion modulation strategy. Based on the dual effects of linear expansion of MPB and the enhancement of lattice tetragonality, the perovskite-type 0.36BS-0.62PT-0.02BZT MPB composition shows a T-d of up to 418 degrees C and a large high-temperature piezoelectric constant (d(33)) of 932 pC N-1. The above comprehensive high-temperature characteristics are far superior to those of most reported perovskite piezoceramics. Moreover, the HT-PEH assembled using the 0.36BS-0.62PT-0.02BZT MPB ceramic exhibits excellent output power density of 80 mu W cm(-3) and ability to drive microelectronic devices even at 400 degrees C. This work demonstrates that the BS-PT-BZT material is a promising candidate for high-temperature piezoelectric energy harvesting applications.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MATERIALS CHEMISTRY C
ISSN: 2050-7526
Year: 2024
Issue: 43
Volume: 12
Page: 17595-17602
6 . 4 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: