Indexed by:
Abstract:
At the end of 2019, the COVID-19 outbreak emerged abruptly. Chinese health authorities highlighted the role of CT scans, X-rays, and other computerized lung imaging in aiding COVID-19 diagnosis. This study aims to develop a computer-based system to assist healthcare professionals in diagnosing COVID-19 infections based on computerized imaging analysis. This approach aims to alleviate the workload of COVID-19 specialists, improving diagnostic and treatment efficiency and allowing specialists to focus on devising appropriate patient care plans promptly. The proposed method focuses on analyzing COVID-19 lesion characteristics within individual CT slices and their serial characteristics across CT sequences. This approach mirrors the diagnostic process of radiologists closely. To validate our model, we compiled a dataset from real medical diagnostic settings, minimizing the impact of lesion-like artifacts. We conducted a series of comparative and ablation experiments to evaluate the model's performance. Results indicate that our model outperforms the classic classification models and other commonly used models for COVID-19 diagnosis on our constructed dataset. © 2024 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2024
Page: 2159-2164
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: