• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Hu, Zhaoxin (Hu, Zhaoxin.) | Ren, Keyan (Ren, Keyan.)

Indexed by:

CPCI-S EI Scopus

Abstract:

Lack of shape guidance and label jitter caused by information deficiency of weak label are the main problems in 3D weakly-supervised object detection. Current weakly-supervised models often use heuristics or assumptions methods to infer information from weak labels without taking advantage of the inherent clues of weakly-supervised and fully-supervised methods, thus it is difficult to explore a method that combines data utilization efficiency and model accuracy. In an attempt to address these issues, we propose a novel plug-and-in point cloud feature representation network called Multi-scale Mixed Attention (MMA). MMA utilizes adjacency attention within neighborhoods and disparity attention at different density scales to build a feature representation network. The smart feature representation obtained from MMA has shape tendency and object existence area inference, which can constrain the region of the detection boxes, thereby alleviating the problems caused by the information default of weak labels. Extensive experiments show that in indoor weak label scenarios, the fully-supervised network can perform close to that of the weakly-supervised network merely through the improvement of point feature by MMA. At the same time, MMA can turn waste into treasure, reversing the label jitter problem that originally interfered with weakly-supervised detection into the source of data enhancement, strengthening the performance of existing weak supervision detection methods. Our code is available at https://github.com/hzx-9894/MMA. © 2024 IEEE.

Keyword:

Timing jitter Object recognition HTTP Object detection

Author Community:

  • [ 1 ] [Hu, Zhaoxin]Beijing University of Technology, Beijing, China
  • [ 2 ] [Ren, Keyan]Beijing University of Technology, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

Year: 2024

Language: English

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:798/10615080
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.