Indexed by:
Abstract:
A novel steel–concrete–steel–gradient aluminum foam energy absorbing panel (SCSGF-EAP) has been proposed for improving the impact resistance of existing structures. The impact resistant performances of the SCSGF-EAP were evaluated through the drop weight impact tests and numerical simulations. The varying thickness of gradient aluminum foam and concrete core was considered in the drop weight impact tests. All the specimens presented a consistent failure mode, which included local indentation and global flexure of SCS panel and crushing of gradient aluminum foam. The Finite Element (FE) model was developed through adopting LS-DYNA for studying the impact resistance of SCSGF-EAP, and the comparisons exhibited that numerical results agreed well with experimental data. The internal energy of different components of specimen was determined by numerical model, and the gradient aluminum foam absorbed the majority of the impact energy. Finally, parametric studies were adopted to determine influences of the initial momentum and kinetic energy of impactor, as well as the density of gradient aluminum foam and impact location on the impact response of SCSGF-EAP. © 2024 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Thin-Walled Structures
ISSN: 0263-8231
Year: 2024
Volume: 205
6 . 4 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: